Glycinebetaine counteracts the inhibitory effects of salt stress on the degradation and synthesis of D1 protein during photoinhibition in Synechococcus sp. PCC 7942.
نویسندگان
چکیده
Glycinebetaine (hereafter referred to as betaine) is a compatible solute that accumulates in certain plants and microorganisms in response to various types of stress. We demonstrated previously that when the cyanobacterium Synechococcus sp. PCC 7942 (hereafter Synechococcus) is transformed with the codA gene for choline oxidase, it can synthesize betaine from exogenously supplied choline, exhibiting enhanced tolerance to salt and cold stress. In this study, we examined the effects of salt stress and betaine synthesis on the photoinhibition of photosystem II (PSII). Salt stress due to 220 mm NaCl enhanced photoinhibition of PSII and betaine protected PSII against photoinhibition under these conditions. However, neither salt stress nor betaine synthesis affected photodamage to PSII. By contrast, salt stress inhibited repair of photodamaged PSII and betaine reversed this inhibitory effect of salt stress. Pulse-chase-labeling experiments revealed that salt stress inhibited degradation of D1 protein in photodamaged PSII and de novo synthesis of D1. By contrast, betaine protected the machinery required for degradation and synthesis of D1 under salt stress. Neither salt stress nor betaine affected levels of psbA transcripts. These observations suggest that betaine counteracts the inhibitory effects of salt stress, with resultant accelerated repair of photodamaged PSII.
منابع مشابه
Two functionally distinct forms of the photosystem II reaction-center protein D1 in the cyanobacterium Synechococcus sp. PCC 7942.
The cyanobacterium Synechococcus sp. PCC 7942 possesses a small psbA multigene family that codes for two distinct forms of the photosystem II reaction-center protein D1 (D1:1 and D1:2). We showed previously that the normally predominant D1 form (D1:1) was rapidly replaced with the alternative D1:2 when cells adapted to a photon irradiance of 50 mumol.m-2.s-1 are shifted to 500 mumol.m-2.s-1 and...
متن کاملPromoters of the phycocyanin gene clusters of the cyanobacterium Synechococcus sp. strain PCC 7942.
The cyanobacterium Synechococcus sp. strain PCC 7942 has duplicated phycocyanin subunit gene clusters cpcB1A1 and cpcB2A2, which are identical to each other and to those of Synechococcus sp. strain PCC 6301 (Anacystis nidulans). Nucleotide sequences of the 428 and 286 bases of the 5' non-coding regions of the cpcB1A1 and cpcB2A2 clusters, respectively, of strain PCC 7942 were identical to those...
متن کاملA transient exchange of the photosystem II reaction center protein D1:1 with D1:2 during low temperature stress of Synechococcus sp. PCC 7942 in the light lowers the redox potential of QB.
Upon exposure to low temperature under constant light conditions, the cyanobacterium Synechococcus sp. PCC 7942 exchanges the photosystem II reaction center D1 protein form 1 (D1:1) with D1 protein form 2 (D1:2). This exchange is only transient, and after acclimation to low temperature the cells revert back to D1:1, which is the preferred form in acclimated cells (Campbell, D., Zhou, G., Gustaf...
متن کاملNitrogen-starvation-induced chlorosis in Synechococcus PCC 7942: adaptation to long-term survival.
When deprived of essential nutrients, the non-diazotrophic cyanobacterium Synechococcus sp. strain PCC 7942 undergoes a proteolytic degradation of the phycobiliproteins, its major light-harvesting pigments. This process is known as chlorosis. This paper presents evidence that the degradation of phycobiliproteins is part of an acclimation process in which growing cells differentiate into non-pig...
متن کاملA bacterial transgene for catalase protects translation of d1 protein during exposure of salt-stressed tobacco leaves to strong light.
During photoinhibition of photosystem II (PSII) in cyanobacteria, salt stress inhibits the repair of photodamaged PSII and, in particular, the synthesis of the D1 protein (D1). We investigated the effects of salt stress on the repair of PSII and the synthesis of D1 in wild-type tobacco (Nicotiana tabacum 'Xanthi') and in transformed plants that harbored the katE gene for catalase from Escherich...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 141 2 شماره
صفحات -
تاریخ انتشار 2006